jump to navigation

Detecting genetic disorders with 3d face scans September 16, 2007

Posted by Johan in Abnormal Psychology, AI, Applied, Behavioural Genetics, Developmental Psychology, Face Perception.
trackback

Following on from last week’s post on smile measuring software, The Scotsman (via Gizmodo) reports on the work by Hammond and colleagues at UCL, who are developing 3d face scans as a quick, inexpensive alternative to genetic testing. This is not as crazy as it sounds at first since it is known that in a number of congenital conditions, the hallmark behavioural, physiological or cognitive deficits are also (conveniently) accompanied by characteristic appearances. The classic example of this is Down syndrome, which you need no software to recognise. More examples appear in the figure above, where you can compare the characteristic appearances of various conditions to the unaffected face in the middle.

Hammond’s software can be used to identify 30 congenital conditions, ranging from Williams syndrome (a sure topic of a future post) to Autism, according to the Scotsman. I know of no facial characteristics of autism, so I would take that part of the story with a grain of salt. The system claims an accuracy rate of over 90 percent, which is not conclusive, but certainly good enough to inform a decision to carry out genetic tests that are. The UCL press release gives some more information about how the software works:

The new method compares a child’s face to similarly aged groups of individuals with known conditions and selects which condition looks the most similar. In order to do this, collections of 3D face images of children and adults with the same genetic condition had to be gathered, as well as controls or individuals with no known genetic condition.

It really is too bad that the software uses 3d images – those cameras are neither cheap nor ubiquitous, which somewhat defeats the point of using this software as an affordable alternative to (or initial screening for) genetic testing. I can’t help but wonder if it wouldn’t be possible to achieve similar accuracy using normal portraits. If you can tell how much someone is smiling in a photo, you should be able to pick up on that extra chromosome…

Comments»

No comments yet — be the first.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: